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When the variables are uncorrelated, (51) gives 
weights inversely proportional to the corresponding 
variances. 

For the case of just two correlated variables 

1/wt=a2(h)--COV (lb 12)- (52) 
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Various closely related programs for the calculation of the rotation function are described. The latter 
explores systematically the amount of overlap between two differently oriented Patterson syntheses, 
and can be used to relate similar molecules or structures in the same or different crystals. The calcu- 
lations require only the intensities rather than the Patterson sections. It is shown that (i) neglecting 
all but 10 ~ of the largest intensities for one of the structures and (ii) construction of a table of the 
transform G, of the spherical volume within which the Patterson functions are being compared, sampled 
in a 5 x 5 x 5 grid within the reciprocal unit cell, gives considerable improvement in computing time 
without excess loss of accuracy. The effect of premature truncation or coarseness of the G table is dis- 
cussed, together with other considerations which are important in the successful application of this 
technique. 

1. Introduction 

We shall describe the flow diagram of various closely 
related programs for the calculation of the rotation 
function (Rossmann & Blow, 1962) (RB). Even with 
existing fast computers the time involved in exploring 
the three rotation angles at reasonable intervals is for- 
midable and a number of techniques are here presented 
which significantly improve the speed of the computa- 
tions. We also discuss strategic considerations required 
in the application of these techniques to various types 
of problem. 

The rotation function is defined (RB) as 

R =  f / 2 ( x 2 ) .  Pt(x,)dx I . (1) 

It measures the degree of coincidence when the Patter- 
son function P1 is rotated on the Patterson function 
P2. Any point xl in P~ is related to any other point 
x2 in P2 through the rotation matrix [C] by the relation- 
ship 

X2 = [C]x  1 . 

The above integral (1) can be shown (RB) to reduce 
to the double summation 

R = S Ir ,  I 2 {Z IFhl 2 ah.h'} (2) 
P h 

where IFp] and [Fbl are the structure amplitudes corre- 
sponding to the Patterson functions P2 and P~ respec- 
tively. Gh,h" is an interference function whose magnitude 
depends on the reciprocal lattice vectors h and h' as 
well as the volume U within which the integral (1) is 
evaluated. The non-integral reciprocal lattice vector h' 
is given by h ' = p [ C ] .  

The rotation function is particularly useful for the 
following problems: 
(a) To determine the relative orientation of identical 

or similar rigid chemical groups in two different 
crystals. P1 and P2 must then represent the Patter- 
son functions of the two crystals. 

(b) To determine the orientation of a known rigid 
group in a molecular crystal. Here P~ is the Patter- 
son function of the unknown crystal, while P2 is 
the Patterson function calculated from a model of 
rigid group in a known orientation. 

(c) To determine the relative orientation of identical 
or similar groups of molecules within the same 
crystallographic asymmetric unit. Now P1 and P2 
both represent the same Patterson function of the 
unknown crystal. 

In all cases the integration is performed over the volume 
U equal to the volume around the origin of the Patter- 
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son functions within which PI and P2 a r e  expected to 
show similarity. We have invariably chosen U to be 
a sphere of radius r0; Gh.h, is then determined entirely 
by the magnitude of the vector H = h + h ' ,  and is then 
given by the expression 

3(sin 2rcH. ro - 2rcHro cos 2~zHr0) 
Gh. b, -- (2rrHr0) 3 

It has previously been observed (RB) that Ga.h, has a 
large value only if H is small. Thus the inner summa- 
tion {£" IFal 2 a~,h,} in (2) need only be performed over 

h 
those points h which are close to the non-integral point 
- h ' .  In order to maintain the exact rotation symmetry 
(Tollin, Main & Rossmann, 1966) it is important to 
select a set of symmetrically disposed points around h. 
The number, n, of points which need be included in 
this summation will depend on the magnitude of the 
radius, r0, and the reciprocal unit cell dimensions of 
the crystal P2. A discussion of the best value of n is 
given in §5, but for most purposes 27 points seems 
satisfactory. 

2. The large term program* 

Examination of equation (2) indicates that R will have 
a large value when large values of If ,  I 2 and Ifol 2 are 
associated by large values of Gh.h,. Since R is approxim- 
ately proportional to IF[ 4 it seems unlikely that the 
sum of the products of many small intensities will out- 
weigh the contribution of a few large products. Also, 
since the time to compute R is directly proportional 
to the number of IFp[ 2 values, and is only slightly af- 

* The idea that using only the largest IF[ 2 values would give 
useful results was arrived at independently by Dr D. M. Blow. 

(a) 

(b) 

(c) 
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02 

Fig. 1. A line through the monoclinic insulin rotation function 
in order to compare results using (a) full data, (b) only the 
50 largest terms for the IFp 12, and (c) the 50 largest terms for 
the IFhl 2 and IFpl 2 set of intensities. 

fected by the number of IFnl z, a modification of the 
general program was written which uses a small num- 
ber of the largest IFol 2 values. The above argument has 
been tested by computing the rotation function of 
monoclinic insulin on itself along the line 01=90 °, 
0 _~< 0 2 ~ 180 °, 03 = 90 °, where 0~, 02, 03 are the Eulerian 
angles as defined by RB. This particular line is known 
to have significant peaks along it (Hodgkin, Dodson, 
Coller & Rossmann, unpublished). The results ob- 
tained are shown in Fig. 1. The top curve shows the 
form of R when all the data were used for both IFp[ 2 
and IFhl 2. The middle curve shows the form of the 
rotation function when only the 50 largest [F,[ 2 values 
and all IF.I 2 data had been employed. The bottom 
curve shows the result of using only the 50 largest 
intensities of both the h (or first) and p (or second) 
crystals. Although using only the largest IFul z inten- 
sities does not make a great saving in time of com- 
putation for our program on a 32K memory store 
machine, the fact that useful results were obtained 
might be helpful in constructing a fast rotation func- 
tion program for a smaller computer. 

A further indication that this approximation is justi- 
fied was obtained in the comparison of seal and sperm 
whale myoglobin (Tollin & Scouloudi, 1966). In the 
latter example the time per point, using all the reflec- 
tion data, was 24 seconds, while when using only the 
47 largest IFoF values the time per point reduced to 
1.8 seconds. These times refer to a Fortran II program 
compiled and executed on an IBM 7094 computer. The 
latter has a cycle time of 2/~sec, requires on the average 
about 10 cycles per floating point operation, and has 
32768 words of memory. 

3. The fine mesh program 

Examination of the block diagram of the general pro- 
gram (Fig.2) shows that most of the time is spent in 
calculating the magnitude of H in the innermost loop. 
Much of this time can be saved by noting that the 
point - h '  can be written as 

hi + Ahl,  h2 + Ah'2, h3 + Ah'3 , 

where the nearest integral reciprocal lattice point to 
- h '  has coordinates (ht, h2, h3). A three-dimensional 
table can be constructed of values of G~.~. with respect 
to a given integral point h and all values of Ah i, Ah 2, 
Ah], laid out as a fine grid within the reciprocal unit 
cell. In order to keep the size of this table within 
bounds each reciprocal length was divided into only 
five equal parts, and the summation over n was fixed 
at 27 points. Hence this table contained 27 x 125 entries. 
The computation of the inner loop is therefore reduced 
to determining Ahl, Ah2, Ah] and then looking up the 
corresponding 27 values of Gh.h.. 

Fig. 3 shows the result of using this program for 
monoclinic insulin. The time per point, using this tech- 
nique in the seal versus whale comparison was now only 
1"0 sec when only the 47 largest [Fp[ 2 values were used. 



874 A D E S C R I P T I O N  O F  V A R I O U S  R O T A T I O N  F U N C T I O N  P R O G R A M S  

4. The block diagram of the program 

The block diagram of the general and large term pro- 
grams is given in Fig.2(a). The modifications to pro- 
duce the 'fine mesh' program are shown in Fig.2(b). 
A number of explanatory notes are given below. Each 
step in the program is represented by a block in the 
diagram. 

The general and large-term programs 
Step 1. The cell data for both crystals, the Laue 

symmetry of reciprocal space, the limits of the rotation 
angles, the value of r0 (the radius of the sphere of Pat- 
terson matching), and the maximum and minimum 
sin 0/2 for the reflections to be used are read into the 
computer. 

Step 2. A table of Gh,w is constructed as a function 
of (Hr0) 2. Values of G are listed for 400 equally spaced 
values of (Hr0) 2 between 0 < Hro < 2.0. 

Step 3. The IF] z values for both crystals are read 
into the computer and a hemisphere in reciprocal space 
is generated using their Laue symmetries. Reflections 
outside the given limits of (sin 0/2) are rejected. The 
position of any IF] 2 value in the store is a function 
of its Miller indices alone in order to give immediate 
random access to each structure amplitude. ]FI 2 values 
with the same Miller indices for both the first and 
second crystals are packed into the same store location 
to save space. However in the 'large-terms' program 
a separate table lists the Miller indices and IFpl 2 values 
of the largest terms. This gives the twofold advantage 
of avoiding not only generating Miller indices in step 
7, of which approximately one-third will necessarily be 
outside the permitted limits of (sin 0/2), but also the 
unpacking procedure while looking up each IFhl 2 value. 

Step 4. As indicated by RB, if x] and x2 represent 
fractional coordinates with respect to the unit cell axes 
of each crystal, we may express the rotation matrix [C] 
as the triple product [a] [0] [l}], where [l}] converts Xl to 
an orthogonal system and [~t] converts from an orthog- 
onal system back to fractionalcoordinates. Matrix[I}] 
is then a function of the rotation angles alone. Ma- 
trices [a] and [l}] are set up here. 

Step 5. The values of the rotation angles are gene- 
rated within the range defined by the data read in step 
1. Our present programs use only Eulerian angles as 
these lead, in general, to simple relationships between 
different asymmetric units in rotation space. The range 
of angles to be computed is a function of the symme- 
tries of the individual Patterson function as discussed 
by Tollin, Main & Rossmann 0966). 

Step 6. Matrices [el and hence [C] are calculated 
from the current values of the rotation angles. 

Step 7. The Miller indices defined by p are generated 
systematically within a parallelepiped that completely 
envelops a hemisphere of reciprocal space to the given 
limits of (sin 0/2). Corresponding IFp[ 2 values are ab- 
stracted from the array in the core store. In the case 
of the 'large-term program' values of p and IFDI 2 are 

(~) IREAD CELL DATA, ETC..] 

(Z)IFORM G TASLE_] t ,3, [~,o I~.r. I~.l' 1 
A~ (4) [FORM [e] , ['/~] I ""r" 

~ l') (x..h.~,,;. ,h;)J 
. - L .  

Ae 

,5) R~ (6) I ( R ~  

(8) [ SET S=O, h;p [c] I 
[R-R I~,l% I ( , , )  (9) ISOLVe _h..-,_'l 

. . -L -  ~ . .  s. 

(,o) ~ (Z')[FORM -,h,,,,h,,Ah,,[-O] 

I "~l,.,.u. FORM (~")'l , 
(,3)[s.S+lFf%.l'- - - * 

' (,2)tLOOK UP G..'IIFJSI 

z~ L ~ : 1 + f ~  1,2z. 

(a) 

Fig. 2. Flow diagram of (a) the general program and (b) modi- 
fication for the fine mesh program. For the latter program 
step l '  is inserted between the points As and A2, and the inner 
loops between Bl and BE are replaced by steps 2" through 5". 

\ 
R 

\ 
~ (a )  

(b) 
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Fig. 3. Comparison of the monoclinic insulin rotation function 
results for (a) the large term program and (b) the fine mesh 
program. 
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not generated but are found by running sequentially 
through the list prepared in step 3. 

Step 8. h' is evaluated and S, which will accumulate 
the sum {£" IFh[ 2 ah,h, }, is set to zero. 

h 
Step 9. hi, the integral reciprocal lattice point in the 

first crystal nearest to the non-integral reciprocal lattice 
point - h '  is found. 

Steps 10 and 11. The n nearest neighbors around the 
point ht are generated successively (this includes the 
point hi itself). For the 27 nearest neighbors approx- 
imation, these points are given by 

h = h i + u ,  
where the components of u take on the values - I, 0, 
+ 1. IH] z, the square of the distance of the point (h +h ' )  
from the origin of reciprocal space in the 'first' crystal 
can now be calculated. 

Step 12. IFh[2 is found in the data table for each 
value of h. Gh.h' is found from the table constructed 
in step 2. 

Step 13. The sum S is incremented by [Fhl2Gh,h,. 
Step 14. R is incremented by IF.I z S, as soon as S 

has been evaluated for all the n nearest neighbors of 
hi for the given p. 

Step 15. The values of the rotation angles, the cor- 
responding magnitude of the rotation function R, and 
the elements of the matrix [C] are printed out. 

The fine mesh program 
The fine mesh program is a modified version of the 

general program. Step 1' is inserted between the points 
AI and A2 (Fig.2) in the flow diagram. 

Step 1'. A table G(I, Ahl, Ah2, Ah'3) is constructed 
of the values of Gh,h, for each of the 27 points h with 

respect to the mesh of non-integral points h'. The latter 
is allowed to explore a three-dimensional grid Ah~, Ah~, 
Ah" 3 in steps of 0.2. 

The innermost loops between the points B1 and B2 
(Fig. 2) of the program are replaced by the part shown 
in Fig. 2(b). The steps involved are: 

Step 2'. The components Ah l, Ah 2, Ah'3 are calcu- 
lated. 

Step 3'. h is determined from the current value o f / ,  
which is then used to find IFhl 2 from the array in the 
store. 

Step 4'. The sum Sis incremented by IFhl 2 Gh.b,(1,Ah ~, 
zh;, zh;), 

Step 5'. Steps 3' and 4' are repeated for all 27 values 
of I. 

5. Strategy in the application of the rotation function 

By using only the n nearest neighbors of hi rather than 
all the vectors h as the inner sum, a cut-off has been 
applied to Gu,h,. Gh,h" is the Fourier transform of a 
function defined by 

F(r) = 1 when r < r0 (3) 
o r  

F(r) = 0  otherwise, 
where F(r) is defined in a space described by the spheri- 
cal polar coordinates r, 0, ~p. The Fourier transform 
of F(r) is G(H). F(r) can then be expressed as 

F ( r ) =  G(H) s in2~rH H 2 dH (4) 
o 2zrrH " " 

(Patterson, 1959). The table G, evaluated by the pro- 
gram, was used to calculate the expression (4) between 
the limits 0 and H0 (instead of infinity), in order to 

1.0 

F (r) 

r 

. . . . . . . .  %_.Lr,o ~ . ~ % L O r ,  
1.5 H 0.5 

ro 
Fig.4. The Fourier transform of the series representing G(H) truncated at various values of H0. The ideal shape of this curve is 

a step function indicated by the continuous lines. 
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test the effect of applying a cut-off to G(H). The results 
for different H0 values are compared with the ideal 
sphere of (3) in Fig. 4. It is clear that the main effect 
is to reduce the effective value of r0. For values of 
H0< 1/ro, F(r) is a poor representation of a sphere. It 
is therefore important to consider carefully the choice 
of the number of terms, n, in the inner loop, as this 
number determines the effective value of H0. 

The effect of the termination of the series shows that 
it is important to select with care which crystal shall 
be P~ and which P2. The two criteria for this choice 
are rough equality of cell dimensions and lack of 
general systematic absences. If possible, a crystal that 
possesses both these properties should be chosen as P~, 
or else the number, n, of integration points h must be 
increased in at least one direction. 

A further consideration arises in case (b) of §1. It is 
helpful to place the known rigid group in an arbitrary 
unit cell of sufficient size to avoid overlap of the self- 
Patterson vectors, that is leaving gaps between the 
groups equal to the diameter of the group. An even 
larger cell leads only to increase in computing time 
without increase in clarity of the rotation function 
(Burnett, Tollin & Rossmann, to be published). The 
rigid group should also be placed in the unit cell in 
such a way that its symmetry, if any, becomes a space 
group operation. By so doing the Patterson function 
Pl will have increased symmetry which will allow a 
reduction in the time for the computations. If the sym- 
metry element is not so chosen then a non-linear sym- 
metry operation in the rotation function results and 
the interpretation of the rotation function becomes 
cumbersome (Tollin, Main & Rossmann, 1966). 

APPENDIX 
Errata in Rossmann & Blow (1962) 

(a) The expression for ~"~hh' in (5) should be 
3 

-re Z (h~+h~)(AT+A+).  
i=1 

(b) The matrix [C] of equations (7) should be trans- 
posed. 

(c) The footnote to page 26 is incorrect - the same 
convention was used by Patterson and hence 

(d) The matrix [~] in Table l(b) should be trans- 
posed. 

(e) Equations (11) define only the magnitudes of Jcq/~0. 
The quadrant in which they lie must be obtained 
by comparing corresponding entries in the two 
terms of [~]. 

( f )  The expression defining cos co following equation 
(9) should read as cos 09 = (cos ~2 - cos 0q cos 0c3)/sin 
~1 sin ~3. 

(g) The minimum permissible angular interval dis- 
cussed in §6 can be more usefully considered in terms 
of the resolution of the reflection data. If only data 
with spacing greater than drain are included in the 
calculations and if the radius of the sphere of Pat- 
terson comparison is r0, then a reasonable angular 
interval is ½dmin/ro. On this basis the Patterson 
function is moved through an angle which takes a 
point on the sphere through a distance equal to 
½dmin. 
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